15AEC60 - DSP & VLSI LABORATORY

L T P C

0032

Note: The students are required to perform any <u>Six Experiments from each Part</u> of the following.

Part-A: DSP Lab

Course Objectives:

- 1. To design real time DSP systems and real world applications.
- 2. To Implement DSP Algorithms using both fixed and floating point processors
- 3. To generate the basic functions of different transforms

4

List of Experiments:

- 1. Generating, plotting and finding the power and energy a given signal.
- 2. Convolution and correlation (auto and cross) of discrete sequences without using built in functions.
- 3. DTFT of a given signal
- 4. N-Point FFT algorithm
- 5. Design of FIR filter using window technique and verifying the frequency response of the filter
- 6. Design of IIR filter using any of the available methods and verifying the frequency response of the filter

Course Outcomes: After completion of the course, the student is able to

- a. Design real time DSP Systems for real world applications.
- b. Implement DSP Algorithms using both fixed and floating point processors

Part-B: VLSI Lab

Course Objectives: Student will be able to

- 1. Understand the layout design rules.
- 2. Learn implementation of Layout, Physical Verification and place & route for complex designs.
- 3. Learn the layout of any combinational circuit.
- 4. Verify the Layouts of DRC and LVS.

List of Experiments:

Note: Any 4 of the above experiments are to be conducted. Exp.1 & 2 is mandatory.

- 1. Introduction to layout design rules
- 2. Layout, physical verification, placement & route for complex design, static timing analysis, IR drop analysis and crosstalk analysis of the following:
 - ➤ Basic logic gates
 - > CMOS inverter
 - > CMOS NOR/NAND gates
 - > CMOR XOR MUX gates
 - > CMOS 1-bit full adder

GAT

- Static/Dynamic logic circuit(register cell)
- > Latch
- > Pass transistor
- 3. Layout of any combinational circuit (complex CMOS logic gate) learning about data paths
- 4. Introduction of Simulation and coding of NMOS/CMOS circuit
- 5. Simulation of basic analog circuits: Inverter/Differential amplifier
- 6. Analog Circuit simulation (AC analysis) CS & CD amplifier

Course Outcomes: Upon completion of the course, students will be able to:

- a. Gain knowledge in Design of logic designs
- b. Know to write HDL codes for all digital designs and implement using simulation tools.
- c. Know obtaining static timing analysis, IR drop analysis and crosstalk analysis of combinational and sequential circuits.
- d. Know the simulation of basic analog circuits.

